Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gigascience ; 112022 05 28.
Article in English | MEDLINE | ID: covidwho-1873910

ABSTRACT

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Subject(s)
Chromosomes, Mammalian , Mesocricetus , Animals , Chromosomes, Mammalian/genetics , Genome , High-Throughput Nucleotide Sequencing/methods , Mesocricetus/genetics , Whole Genome Sequencing
2.
Front Pharmacol ; 11: 579330, 2020.
Article in English | MEDLINE | ID: covidwho-1389228

ABSTRACT

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models' optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn't show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study's findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.

SELECTION OF CITATIONS
SEARCH DETAIL